The Stellations of the Rhombic Triacontahedron

This page is under construction in the sense that the 3D models still need to be fine tuned.

Contents

Introduction

This page presents interactive 3D models of the stellations of the . The 3D models have predefined camera points from which the different kind of symmetry axes are recognised. In the article The Stellations of the Rhombic Triacontahedron and beyond P. Messer presents a way to derive all fully supported stellations of the rhombic triacontahedron according to a set of rules. All models on this page are based on that set of rules and the presented methods were used to generate all models.

To be able to view and investigate the 3D models you need to have working OpenGL drivers and JavaScript enabled.

Models of the Stellations

The following table contains the list of fully supported reflexible stellations.

Name Regions 3D model Name Regions 3D model Name Regions 3D model
A 1a B 2ab C 2a, 3ac
CD 3abc D 2b, 3b DE 3ab, 4ad
DG 3ab, 4a, 5a E 2a, 3a, 4ad EF 4abcd
EI 4acd, 5c F 3c, 4bc FG 4abc, 5a
G 2a, 3a, 4a, 5a GH 4b, 5abd GHI 5abcd
GI 4ac, 5ac GK 5ad, 6bcd GM 5ad, 6bd, 7be
GMN 5ad, 6d, 7bcef GN 5ad, 6cd, 7cf GQ 5ad, 6d, 7ef, 8cf
GU 5ad, 6d, 7ef, 8f, 9g H 4bd, 5bd HI 4d, 5bcd
I 3c, 4c, 5c IJ 5bc, 6a J 4b, 5b, 6a
JK 6abcd JM 6abd, 7be JMN 6ad, 7bcef
JN 6acd, 7cf JQ 6ad, 7ef, 8cf JU 6ad, 7ef, 8f, 9g
K 4d, 5d, 6bcd L 6bc, 7ad LM 6b, 7abde
LMN 7abcdef LN 6c, 7acdf LQ 7adef, 8cf
LU 7adef, 8f, 9g M 4d, 5d, 6bd, 7be MN 4d, 5d, 6d, 7bcef
MO 7bcde, 8ad MR 7bcde, 8d, 9ae N 4d, 5d, 6cd, 7cf
NP 7abcf, 8be NT 7abcf, 8b, 9c O 6c, 7cd, 8ad
OP 7bc, 8abde OPQ 8abcdef OPU 8abdef, 9g
OQ 7de, 8acdf OQT 8abcdf, 9c OT 7bc, 8abd, 9c
OTU 8abdf, 9cg OU 7de, 8adf, 9g P 6b, 7ab, 8be
PQ 7af, 8bcef PQR 8bcdef, 9ae PR 7bc, 8bde, 9ae
PRU 8bdef, 9aeg PU 7af, 8bef, 9g Q 4d, 5d, 6d, 7ef, 8cf
QR 7de, 8cdf, 9ae QRT 8bcdf, 9ace QT 7af, 8bcf, 9c
R 6c, 7cd, 8d, 9ae RS 8ce, 9abdef RST 8c, 9abcdef
RSTU 9abcdefg RSU 8e, 9abdefg RT 7bc, 8bd, 9ace
RTU 8bdf, 9aceg RTW 10bg, 9abcef RU 7de, 8df, 9aeg
RUX 10cd, 9abdeg RW 10bg, 8e, 9abef RWX 10bcdg, 9abe
RX 10cd, 8c, 9abde R2A 10bc, 11cf, 9abe S 8ace, 9bdf
ST 8ac, 9bcdf STU 8a, 9bcdfg SU 8ae, 9bdfg
T 6b, 7ab, 8b, 9c TU 7af, 8bf, 9cg TUV 10aef, 9acdfg
TV 10aef, 8c, 9acdf TVW 10abefg, 9acf TW 10bg, 8a, 9bcf
TZ 10afg, 11be, 9acf U 4d, 5d, 6d, 7ef, 8f, 9g UV 10aef, 8e, 9adfg
UVX 10acdef, 9adg UX 10cd, 8a, 9bdg UY 10ade, 11ad, 9adg
V 10aef, 8ce, 9adf VW 10abefg, 8e, 9af VWX 10abcdefg, 9a
VX 10acdef, 8c, 9ad V2A 10abcef, 11cf, 9a W 10bg, 8ae, 9bf
WX 10bcdg, 8a, 9b WY 10abdeg, 11ad, 9a X 10cd, 8ac, 9bd
XZ 10acdfg, 11be, 9a Y 10ade, 11ad, 8c, 9ad YZ 10adg, 11abde, 9a
YZ2A 10a, 11abcdef, 9a Y2A 10abe, 11acdf, 9a Z 10afg, 11be, 8e, 9af
Z2A 10acf, 11bcef, 9a 2A 10bc, 11cf, 8a, 9b 2B 10a, 11abf, 12abc, 9a

The following table contains the list of fully supported enantiomorphous stellations.

Name Regions 3D model Name Regions 3D model
E, (F)r (4ad), (4bc)r, (3ab)l (F)r (3c), (4bc)r, (3ab)l
G, (F)r (4a, 5a), (4bc)r, (3ab)l G, (K)r (5ad), (6bcd)r, (5bc)l
G, (Q)r (5ad, 6d, 7ef), (8cf)r, (7bc)l J, (K)r (6a), (6bcd)r, (5bc)l
J, (Q)r (6ad, 7ef), (8cf)r, (7bc)l (K)r (4d, 5d), (6bcd)r, (5bc)l
L, (Q)r (7adef), (8cf)r, (7bc)l N, (P)r (7abcf), (8be)r, (7de)l
O, (P)r (7bc, 8ad), (8be)r, (7de)l OP, (Q)r (8abde), (8cf)r, (7bc)l
OQ, (P)r (8acdf), (8be)r, (7de)l O, (PQ)r (8ad), (8bcef)r, (7bcde)l
O, (Q)l, (P)r (8ad), (7bc, 8be)r, (7de, 8cf)l OU, (P)r (8adf, 9g), (8be)r, (7de)l
O, (Q)r (7de, 8ad), (8cf)r, (7bc)l OT, (Q)r (8abd, 9c), (8cf)r, (7bc)l
(P)r (6b, 7ab), (8be)r, (7de)l P, (Q)r (7af, 8be), (8cf)r, (7bc)l
Q, (P)r (7af, 8cf), (8be)r, (7de)l (PQ)r (7af), (8bcef)r, (7bcde)l
(Q)l, (P)r (7af), (7bc, 8be)r, (7de, 8cf)l PR, (Q)r (8bde, 9ae), (8cf)r, (7bc)l
QR, (P)r (8cdf, 9ae), (8be)r, (7de)l R, (PQ)r (8d, 9ae), (8bcef)r, (7bcde)l
R, (Q)l, (P)r (8d, 9ae), (7bc, 8be)r, (7de, 8cf)l R, (P)r (7bc, 8d, 9ae), (8be)r, (7de)l
RU, (P)r (8df, 9aeg), (8be)r, (7de)l U, (P)r (7af, 8f, 9g), (8be)r, (7de)l
(Q)r (4d, 5d, 6d, 7ef), (8cf)r, (7bc)l R, (Q)r (7de, 8d, 9ae), (8cf)r, (7bc)l
RT, (Q)r (8bd, 9ace), (8cf)r, (7bc)l T, (Q)r (7af, 8b, 9c), (8cf)r, (7bc)l
R, (S)r (8ce, 9ae), (9bdf)r, (8bdf)l R, (PS)r (8c, 9ae), (8e, 9bdf)r, (7de, 8df)l
R, (QS)r (8e, 9ae), (8c, 9bdf)r, (7bc, 8bd)l R, (PQS)r (9ae), (8ce, 9bdf)r, (7bcde, 8d)l
RT, (S)r (8c, 9ace), (9bdf)r, (8bdf)l RT, (QS)r (9ace), (8c, 9bdf)r, (7bc, 8bd)l
RTU, (S)r (9aceg), (9bdf)r, (8bdf)l RU, (S)r (8e, 9aeg), (9bdf)r, (8bdf)l
RU, (PS)r (9aeg), (8e, 9bdf)r, (7de, 8df)l RU, (X)r (9abdeg), (10cd)r, (9cf)l
RU, (SX)r (9aeg), (10cd, 9bd)r, (8bdf, 9c)l RW, (X)r (10bg, 9abe), (10cd)r, (9cf)l
R, (X)r (8c, 9abde), (10cd)r, (9cf)l R, (SX)r (8c, 9ae), (10cd, 9bd)r, (8bdf, 9c)l
R, (QSX)r (9ae), (10cd, 8c, 9bd)r, (7bc, 8bd, 9c)l (S)r (8ace), (9bdf)r, (8bdf)l
(PS)r (8ac), (8e, 9bdf)r, (7de, 8df)l (QS)r (8ae), (8c, 9bdf)r, (7bc, 8bd)l
(PQS)r (8a), (8ce, 9bdf)r, (7bcde, 8d)l T, (S)r (8ac, 9c), (9bdf)r, (8bdf)l
T, (QS)r (8a, 9c), (8c, 9bdf)r, (7bc, 8bd)l TU, (S)r (8a, 9cg), (9bdf)r, (8bdf)l
U, (S)r (8ae, 9g), (9bdf)r, (8bdf)l U, (PS)r (8a, 9g), (8e, 9bdf)r, (7de, 8df)l
TU, (V)r (9acdfg), (10aef)r, (9be)l TU, (SV)r (9acg), (10aef, 9df)r, (8bdf, 9e)l
T, (V)r (8c, 9acdf), (10aef)r, (9be)l T, (SV)r (8c, 9ac), (10aef, 9df)r, (8bdf, 9e)l
T, (QSV)r (9ac), (10aef, 8c, 9df)r, (7bc, 8bd, 9e)l TW, (V)r (10bg, 9acf), (10aef)r, (9be)l
T, (Z)r (10afg, 9acf), (11be)r, (10be)l T, (VZ)r (10g, 9acf), (10af, 11be)r, (10b, 9be)l
U, (V)r (8e, 9adfg), (10aef)r, (9be)l U, (SV)r (8e, 9ag), (10aef, 9df)r, (8bdf, 9e)l
U, (PSV)r (9ag), (10aef, 8e, 9df)r, (7de, 8df, 9e)l UV, (X)r (10aef, 9adg), (10cd)r, (9cf)l
UX, (V)r (10cd, 9adg), (10aef)r, (9be)l U, (VX)r (9adg), (10acdef)r, (9bcef)l
U, (X)l, (V)r (9adg), (10aef, 9cf)r, (10cd, 9be)l U, (SVX)r (9ag), (10acdef, 9d)r, (8bdf, 9ce)l
U, (X)r (8a, 9bdg), (10cd)r, (9cf)l U, (SX)r (8a, 9g), (10cd, 9bd)r, (8bdf, 9c)l
(V)r (8ce, 9adf), (10aef)r, (9be)l (SV)r (8ce, 9a), (10aef, 9df)r, (8bdf, 9e)l
(PSV)r (8c, 9a), (10aef, 8e, 9df)r, (7de, 8df, 9e)l (QSV)r (8e, 9a), (10aef, 8c, 9df)r, (7bc, 8bd, 9e)l
(PQSV)r (9a), (10aef, 8ce, 9df)r, (7bcde, 8d, 9e)l W, (V)r (10bg, 8e, 9af), (10aef)r, (9be)l
VW, (X)r (10abefg, 9a), (10cd)r, (9cf)l WX, (V)r (10bcdg, 9a), (10aef)r, (9be)l
W, (VX)r (10bg, 9a), (10acdef)r, (9bcef)l W, (X)l, (V)r (10bg, 9a), (10aef, 9cf)r, (10cd, 9be)l
V, (X)r (10aef, 8c, 9ad), (10cd)r, (9cf)l X, (V)r (10cd, 8c, 9ad), (10aef)r, (9be)l
(VX)r (8c, 9ad), (10acdef)r, (9bcef)l (X)l, (V)r (8c, 9ad), (10aef, 9cf)r, (10cd, 9be)l
(SVX)r (8c, 9a), (10acdef, 9d)r, (8bdf, 9ce)l (QSVX)r (9a), (10acdef, 8c, 9d)r, (7bc, 8bd, 9ce)l
2A, (V)r (10bc, 11cf, 9a), (10aef)r, (9be)l W, (X)r (10bg, 8a, 9b), (10cd)r, (9cf)l
(X)r (8ac, 9bd), (10cd)r, (9cf)l (SX)r (8ac), (10cd, 9bd)r, (8bdf, 9c)l
(QSX)r (8a), (10cd, 8c, 9bd)r, (7bc, 8bd, 9c)l X, (Z)r (10acdfg, 9a), (11be)r, (10be)l
Z, (X)r (10afg, 11be, 9a), (10cd)r, (9cf)l (XZ)r (10afg, 9a), (10cd, 11be)r, (10be, 9cf)l
(Z)l, (X)r (10afg, 9a), (10bcde)r, (11be, 9cf)l X, (VZ)r (10cdg, 9a), (10af, 11be)r, (10b, 9be)l
(VXZ)r (10g, 9a), (10acdf, 11be)r, (10b, 9bcef)l (VZ)l, (X)r (10g, 9a), (10bcd, 9be)r, (10af, 11be, 9cf)l
Y, (Z)r (10adg, 11ad, 9a), (11be)r, (10be)l Y2A, (Z)r (10a, 11acdf, 9a), (11be)r, (10be)l
(Z)r (10afg, 8e, 9af), (11be)r, (10be)l (VZ)r (10g, 8e, 9af), (10af, 11be)r, (10b, 9be)l
2A, (Z)r (10acf, 11cf, 9a), (11be)r, (10be)l 2A, (VZ)r (10c, 11cf, 9a), (10af, 11be)r, (10b, 9be)l
(2B)r (10a, 11abf, 9a), (12abc)r, (11cde)l (Z2B)r (10a, 11af, 9a), (11b, 12abc)r, (10be, 11cd)l

References

Messer, Peter W., The Stellations of the Rhombic Triacontahedron and beyond, Structural Topology 21 (p. 25-46, 1995)

Links

Last Updated

2024-04-16